路群


研究员/ qluyunlife@163.com/细胞自噬与免疫炎症调控

个人简历


 

20097月于中国农业大学获博士学位。

20098-20125月在北京生命科学研究所从事博士后研究。

20126-20194月在Washing University School of Medicine先后从事博士后和Staff Scientist研究。


主要研究方向

细胞自噬对免疫炎症和体内免疫内稳态的调控研究

细胞自噬 (Autophagy)是真核生物中一种高度保守的由溶酶体介导的细胞内的降解过程。随着对自噬的核心功能的深入和广泛研究,科学家们发现自噬的核心功能是清除细胞内不需要的和有潜在危害的细胞组分,例如错误折叠的蛋白聚合物、受损的线粒体以及入侵的细菌病毒等,来维持细胞的稳态平衡。自噬异常与人类的癌症、代谢失调、衰老、神经退行性疾以及免疫炎症和细菌、病毒感染等各个方面都密切相关。我自博士毕业后开始从事自噬相关的研究,包括在秀丽线虫(Caenorhabditis elegans)中进行自噬基因的遗传筛选和鉴定,以及自噬基因对小鼠免疫炎症和免疫内稳态的调控作用的研究。自噬基因Epg5首先在线虫的遗传筛选中被鉴定发现。2013年人类遗传学疾病分析显示,EPG5突变会引起人类多系统失调综合症Vici syndrome。以小鼠为模型,我们发现Epg-5和其他自噬基因的缺失会导致肺部免疫环境稳态的失衡,引起免疫炎症,进而提高对流感病毒的抵抗,表明个体体内正常的免疫稳态平衡在控制组织炎症和感染疾病中的重要作用。我们将深入下一步的关键问题的研究,也就是细胞自噬在免疫炎症发生和调控中的机理。将结合生命科学中心已有研究基础,综合免疫学、病毒感染、遗传学、细胞分子生物学、生物化学等手段,着重探索细胞自噬对肺脏、肠道等粘膜免疫相关组织器官中免疫炎症发生的控制和调节机理,以及自噬基因对流感病毒在高等生物及人体内的抑制作用。


招生硕士点专业方向:细胞生物学


主要论文

 

1.       Martinez, J., Cunha, L.D., Park, S., Yang, M., Lu, Q., Orchard, R., Li, Q.Z., Yan, M., Janke, L., Guy, C., Linkermann, A., Virgin, H.W., and Green, D.R. (2016) Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 5, 115-119. (IF: 41.577, selected as “Very Good” for FACULTY OF 1000 Biology).

2.       Lu, Q., Yokoyama, C.C., Williams, J.W., Baldridge, M.T., Jin, X.H., DesRochers, B., Bricker, T., Wilen, C.B., Bagaitkar, J. Loginicheva, E., Sergushichev, A, Kreamalmeyer, D., Keller, B.C., Zhao, Y., Kambal, A., Green, D.R., Martinez, J., Dinauer, M.C., Holtzman, M.J., Crouch, E.C., Beatty, W., Boon, A.C.M., Zhang, H., Randolph, G.J., Artyomov, M.N., and Virgin, H.W. (2016) Homeostatic control of innate lung inflammation by Vici syndrome gene Epg5 and additional autophagy genes promotes influenza pathogenesis. Cell Host & Microbe 19, 102-113. (IF: 17.872, Previewed in the same issue of Cell Host & Microbe).

3.       Martinez, J., Malireddi, R.K., Lu, Q., Cunha, L.D., Pelletier, S., Gingras, S., Orchard, R., Guan, J.L., Tan, H., Peng, J., Kanneqanti, T.D., Virgin H.W., and Green D.R. (2015) Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nature Cell Biology 17, 893-906. (IF: 19.064, selected as “Very Good” for FACULTY OF 1000 Biology).

4.       Zhang, H., Chang, J.T., Guo, B., Hansen, M., Jia, K.L., Kovács, A.L., Kumsta, C., Lapierre, L.R., Legouis, R., Lin, L., Lu, Q., Meléndez, A., O'Rourke, E.J., Sato, K., Sato, M., Wang, X.C. and Wu, F. (2015) Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11, 9-27. (IF: 11.1)

5.       Wang, H.B., Lu, Q. (Co-first author), Cheng, S., Wang, X., and Zhang, H. (2013). Autophagy activity contributes to programmed cell death in Caenorhabditis elegans. Autophagy 9, 1975-1982. (IF: 11.1)

6.       Cheng, S.Y., Wu, Y., Lu, Q., Yan, J.C., Zhang, H., and Wang, X.C. (2013). Autophagy genes coordinate with the class II PI/PtdIns 3-kinase PIKI-1 to regulate apoptotic cell clearance in C. elegans. Autophagy 9, 2022-2032. (IF: 11.1)

7.       Lu, Q., Wu, F., and Zhang, H. (2013) Aggrephagy: lessons from C. elegans. Biochemical J 452 (part 3), 381-390. (IF: 3.857, review article)

8.       Lin, L., Yang, P.G., Huang, X.X., Zhang, H., Lu, Q., and Zhang, H. (2013). The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. Journal of Cell Biology 201, 113-129. (IF: 8.784)

9.       Sun, T., Wang, X.W., Lu, Q., Ren, H.Y., and Zhang, H. (2011). CUP-5, the C. elegans ortholog of the mammalian lysosomal channel protein MLN1/TRPML1, is required for proteolytic degradation in autolysosomes. Autophagy 7, 1308-1315. (IF: 11.1)

10.   Lu, Q., Yang, P.G., Huang, X.X., Hu, W.Q., Guo, B., Wu, F., Lin, L., Kovács, A.L., Yu, L. and Zhang, H. (2011) The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Developmental Cell 21, 343-357. (IF: 9.616, selected as “Very Good” for FACULTY OF 1000 Biology).

11.   Tian, Y., Ren, H.Y., Zhao, Y., Lu, Q., Huang, X.X., Yang, P.G., and Zhang, H. (2010) Four metazoan autophagy genes regulate cargo recognition, autophagosome formation and autolysosomal degradation. Autophagy 6, 984-985. (IF: 11.1)

12.   Tian, Y., Li, Z.P., Hu, W.Q., Ren, H.Y., Tian, E, Zhao, Y., Lu, Q., Huang, X.X., Yang, P.G., Li, X., Wang, X.C., Kovács, A.L., Yu, L. and Zhang, H. (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042-1055. (IF: 31.898, Previewed as a leading edge finding in the same issue of Cell; selected as “Exceptional” for FACULTY OF 1000 Biology; highlighted by in Nature China).

13.   Zou, W., Lu, Q. (Co-first author), Zhao, D.F., Li, W.D., Mapes, J., Xie, Y., and Wang, X.C. (2009). Caenorhabditis elegans myotubularin MTM-1 negatively regulates the engulfment of apoptotic cells. PLoS genetics 5, e1000679. (IF: 5.54)

14.   Lu, Q., Zhang, Y., Hu, T.J., Guo, P.F., Li, W.D., and Wang, X.C. (2008). C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development 135, 1069-1080. (IF: 5.413)